JOURNAL OF COMPUTATIONAL PHYsICS 105, 367-368 (1993}

NOTE

A Note on Algorithms for Billiard-Ball Dynamics

In a recent article, Lubachevsky [17] described a com-
putational scheme for efficiently simulating hard-disk and
hard-sphere fluids. The paper inciudes a statement to the
effect that, apart from one of the original papers [2] that
introduced the method and a later review article [3], there
has been no other discussion in the literature of appropriate
algorithms. The purpose of this note is threefold: to remind
the readers of this journal that an article on the subject was
published here in 1980 [4] (see aiso [5]), to briefly
compare and contrast the principal features of the two
algorithms, and to provide relative performance figures that
will aid the interested reader in deciding which approach is
preferable.

Both algorithms treat the problem as a discrete-event
simulation, which is the only way the dynamics of systems
based on discontinuous step potentials can be sensibly
handled. The system evolves in time by means of a series of
pairwise collisions. At each collision the velocities of the
colliding particles change according to elementary dynami-
cal rules, and then the future collisions in which the
colliding particles may be involved are examined. To reduce
the amount of computation required per collision o a
manageable level, namely a constant G(1 j rather than G(Nj
for an N-particle system, the spatial region occupied by the
system is divided into small cells (or sectors) and future
collision surveys are confined to particles in the same and
adjacent cells. Cell crossings also represent events that must
be monitored. The details of the scheme ensure no collisions
are missed.

The other similarity between the methods is in the
management of the set of possible future events. In order to
limit the work needed to determine the next event, the calen-
dar of future events is maintained as a binary tree (or heap).
Since the total number of recorded future events is typicatly
O(N)—exactly one per particle in [1], or some small
number per particle in [4]—the binary tree 6] facilitates
this determination in an average of O(log N) operations.

The principle difference between the algorithms is the role
of the event as an element of the computation. In the new
study [1] only the earliest possible collision event for each
particle is recorded, with the implication that potentially
useful information obtained about other possible collisions
is discarded on the assumption that the earliest event is
unlikely to be preempted. If it is, then the discarded com-

367

putations are, in effect, repeated; the degree to which this
occurs has not been studied. Furthermore, events that are
preempted are still allowed to occur, but are no longer
treated as collisions, but merely as position changes for the
particle involved. By way of contrast, the old algorithm [4]
does not discard information about subsequent possible
collisions, and when a collision does occur aill other
scheduled events in which the particles involved were due to
participate are explicitly erased from the event calendar.
This reflects a design goal of minimizing the amount of work
(the aptly-named “aggressive” approach rather than the
“lazy” scheme adopted in [1]), and the performance figures
(see later) apparently justify this goal. Other implementa-
tion issues are to be found in the original paper [4]. The
only disadvantage is the memory needed to store the larger
event set, but [alling memory costs reduce the significance of
this issue; both methods choose to sacrifice storage in pur-
suit of computational speed, although to differing degrees.

Unlike the new approach, which does not guarantee
monotonically increasing time between events (with conse-
quences that must be addressed) and which also requires a
Iengthy discussion to convince the reader of its consistency
and correctness, the old approach is based on molding
the data structures to fit the computational model in the
most natural manner possible; the operations required to
accommodate the slightly increased data complexity of
the old method, though somewhat tedious, are entirely
standard [7].

The bottom line is, of course, performance. Molecular
dynamics is being used to study problems for which both
space and time scales are ever increasing. Thus the proces-
sing time per collision is the key factor in choosing an algo-
rithm. Performance figures for the new approach are quoted
for a DEC VAX 8550 computer. Results for the old method
obtained on a machine of similar power—the IBM
4381/13—will be given here. While the only truly reliable
way to compare algorithm performance is by running the
programs on each of the machines concerned, a reasonable
alternative in the case of non-vector machines is to use the
standard Linpack performance measurements [8]; in this
instance the means of single and double precision Fortran
tests conveniently amount to 1.2 MFlops for both machines.

The new method yields a collision rate of between 150
and 450 collisions/s (for N =2000—the parameter that

0021-9991/93 $5.00

Copyright © 1993 by Academic Press, Inc.
All rights of reproduction in any form reserved.

368

modifies the rate is not specified). The old method, coded in
standard Fortran, delivers approximately 670 collisions/s
(for N =2500), a value that is almost consiant over a range
of densities in the dense fluid regime (e.g. 0.9 disks/unit
area) and even faster at lower densities, Other performance
figures (on an older computer and in three dimensions)
were given in [4]; assembly language coding—especially of
the data structure manipulations—can lead to even higher
speeds, provided software protability is not an issue. Thus,
despite the extra event information stored, the old method
appears significantly {aster.

As for applications, the approach is readily extended to
handle such systems as polymers and a thermaily convect-
ing fluid in a gravitational field [9]. In ongoing studies of
the Rayleigh-Bénard problem, systems ranging in size to
over 10° particles are being simulated for several times
10° collisions on an IBM 6000/320 workstation. Such
sizes—currently regarded as extreme, but destined to
become the norm given the inexorable advance of the high-
performance workstation—are necessary (0 allow the study
of spatio-temporal phenomena (such as time-dependent
convection or polymer transport) that embrace a broad
range of length and time scales.

1
2
3

4
5
6

D. C. RAPAPORT

REFERENCES

. B. D. Lubachevsky, J. Compur. Phys. 94, 255 (1991).
B. I Alder and T. E. Wainwright, J. Cherm. Phys. 31, 459 {1959).

. 1.). Erpenbeck and W, W. Wood, in Medern Thearetical Chemistry,
edited by B. J. Berne, Vol. 6B (Plenum, New York, 1977), p. L.

. D. C. Rapaport, J. Comput. Phys. 34, 184 (1980).
. D. C. Rapaport, Compur. Phys. Rep. 9,1 (1988).

. D. E. Knuth, Serting and Searching, The Art of Computer Programming,
Vol. 3 (Addison-Wesley, Reading, MA, 1973).

7. D. E. Knuth, Fundamental Algorithms, The Art of Compuer Program-

=]

ming, Yol. 1 {(Addison-Wesley, Reading, MA, 1968).

. 1.J. Dongarra, Argonne National Lab. Math. and Comput. Sci. Tech.
Memo No. 23, 1989 (unpublished).

. D. C. Rapaport, J. Chem. Phys. 71, 3299 (1979); Phys. Rev. Lett. 60,
2480 {1988).

Received June 29, 1991; accepied August 23, 1992

D. C. RAPAPORT

Physics Department
Bar-Tign University
Ramay-Gan 52900
Israel

